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Giant clusters in random ad hocnetworks
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~Received 18 November 2002; published 18 March 2003!

The present paper introducesad hoccommunication networks as examples of large scale real networks that
can be prospected by statistical means. A description of giant cluster formation based on a single parameter of
node neighbor numbers is given along with the discussion of some asymptotic aspects of giant cluster sizes.
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I. INTRODUCTION

Nowadays, natural and designed networks are in the fo
of research on different scientific disciplines. Using comp
ers the amount of available empirical data on real world n
works has been increased during the past few years.
amples of real networks include the World Wide Web@1,2#,
the Internet@3–7#, collaboration networks of movie actor
and scientists@8–10#, power grids@11,12#, and the metabolic
network of living organisms@13–16#.

Random graphs are natural candidates for the descrip
of the topology of such large systems of similar units.
Refs. @17–19# the authors have developed a model—wh
assumes each pair of the graph’s vertices to be conne
with equal and independent probabilities—that treats a
work as an assembly ofequivalent units.

This model, introduced by the mathematicians Erdo¨s and
Rényi, has been much investigated in the mathematical
erature@20,21#. However, the increasing availability of larg
maps of real-life networks has indicated that the latter str
tures are fundamentally correlated systems, and in many
spects their topologies deviate from the uncorrelated rand
graph model.

Two classes of models, commonly called thesmall-world
graphs@11,12,22# and thescale-free networks@23,24#, have
been developed to capture the clustering and the power
degree distribution present in real networks@1,3,8–13,23–
29#.

Here we presentad hoc networks@30# as examples of rea
structures that can be investigated similarly to the above
works.Ad hocnetworks arise in the next generations of co
munication systems and thereby we try to summarize
principal characteristics of such systems. In thead hoc
scheme users communicate by means of short range r
devices, which means that every device can connect to th
devices that are positioned no farther than a finite maxim
geometrical range. We call this range the given devic
transmission rangeand the exact value of this range ma
depend on the transmitter’s power and various other phys
parameters. See Fig. 1 for an example ofad hoc network
topology. Neighbor nodes talk the way ordinary radios, su
as CBs, do; however, communication between n
neighboring users is also possible. The latter case is acc
plished by sending the information from the source use
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the destination hop by hop, through intermediate nodes
the density of users in the area is high compared to th
transmission ranges, it is highly possible that more than
alternative route exists between two users. This last fea
can be exploited in the case if the shortest route is ov
loaded or broken, or if the system allows splitting the info
mation flow into separate parallel flows. Moreover, the us
are free to move randomly and organize themselves a
trarily; thus, the network’s topology may change rapidly a
unpredictably. Such a network may operate in a stand-al
fashion, or may be connected to the Internet.

Giant clusters inad hoc networks are made interestin
because a communication network provides a meanin
service only if it integrates as many users as possible wi
the covered area~e.g., 99% may be considered a good co
erage!. In this paper we introduce a fractal model that dup
cates the giant component formation in thead hocnetworks
in an area inlaid with obstacles, partially screening ra
transmission. Our main result is that in such networks
giant component size can be described by a sin
parameter—the average number of neighbors a node
The rest of this paper is structured as follows. Section
gives a detailed description of our randomad hocnetwork
model. In Secs. III and IV we delve into the topology diffe
ences between random graphs and graphs built using
model. Section V shows the numerical simulation resu
supporting these analyses.

II. THE RANDOM AD HOC NETWORK MODEL

A wirelessad hocnetwork consists of a number of radi
devices, also referred to as ‘‘nodes’’ in the following. Eve

FIG. 1. Nodes and connections of an examplead hocnetwork.
The transmission range is the same for all nodes—denoted by
dotted circle for two of the nodes. The shortest path between ts
source and thed destination users touches three intermediate nod
and there is an alternative route of six hops, which has no comm
intermediate nodes with the first.
©2003 The American Physical Society10-1
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node may be connected to one or more other nodes in
vicinity; the actual set of connections depends on the
tance of the nodes. In a static environment these connec
define the topology of the system; if the nodes are allowe
move then the topology may change; however, at any gi
point of time there is still a well-defined topology availabl

To be precise we define arandom ad hoc networkas a set
of uniformly distributed nodes on the arena of the unit E
clidean square@0;1#3@0;1# with the connections betwee
the pairs of them. The connections are two way in the se
that if nodeA can communicate to nodeB, then nodeB is
also able to communicate to nodeA.

Two nodes are connected if the geometrical distance
the two is less than a certain valuer t, that is, the nodes ca
communicate up to their ‘‘transmission range.’’ We repres
a realization of such a system using an undirected gr
G(V,E), where the vertices and the edges denote the no
and the two-way connections, respectively. Sometime
graph resulting this way is referred to as ageometric random
graph (GRG). Note that there are no loops and no multip
edges inG: ~1! a node should not communicate to itself; a
~2! if two nodes are neighbors, then technically there is
sense to open a second communication channel betw
them.

Furthermore, all the length parameters in the system
made dimensionless as follows. Length is measured as
multiples of theunit radius r0, which is, in turn, defined by
the share of the whole area for each node:

r 0ªA A

Np
, ~1!

whereA denotes the size of the arena andN is the number of
nodes. The ratio of the transmission range and the unit ra
is called thenormalized transmission rangeand is denoted
by

r nª
r t

r 0
. ~2!

As mentioned in the Introduction, a communication n
work may deliver meaningful service only if the network
connected, or at least has a vast subset that is connected
work is focused on examining the criteria for giant clus
formation and, in particular, in the networks with fractal co
nectivity properties.

In the following we give a short overview of the network
on random graphs and afterwards we turn to our mode
fractal ad hocconnectivity.

III. CONNECTIVITY IN RANDOM NETWORKS

After distributing and connecting the nodes as descri
previously, the largest connected component ofG can be
determined. LetS be this components’ size fraction:

Sª
~nodes in the largest component!

N
,
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which quantity is obtained by counting. This quantity is
particular importance because the network gets fully c
nected ifSdiverges and for this end we are to investigate
relationship with other network parameters.

In Ref. @31# the authors present the theory ofrandom
graphs @18# of arbitrary degree distribution. Among other
an exact result for the giant component size is given, wh
we shall briefly cite here. Their theory is based on the g
erating function formalism: given a unipartite undirect
graphG andpk being the probability that a vertex onG has
degreek, the generating function for the vertex degree d
tribution is defined as

G0~x!5 (
k50

`

pkx
k

and if the distribution pk is correctly normalized then
G0(1)51 will hold. Also another function of importance i
the one generating the distribution of degree of the verti
pointed to by a randomly chosen edge. Following such
edge one arrives at a vertex with probability proportional
the degree of that vertex, thus the degree distribution is p
portional tokpk, and the normalized distribution is generat
by

(
k

pkx
k

(
k

pk

5x
G08~x!

G08~1!
.

Considering the distribution of the remaining edges~i.e., all
edges except the one we arrived on!, this distribution is the
same as above, less by one power ofx, making it generated
by

G1~x!5
G08~x!

G08~1!
.

It was shown in Ref.@31# that usingG0(x) andG1(x), and if
there is a giant component in the graph then this com
nent’s size can be calculated as

S512G0~u!, ~3!

whereu is the smallest non-negative real value satisfying

u5G1~u!. ~4!

According to these equations we are now able to obtai
closed form expression forS in our GRGs. For more refer
ence on the derivation of the results cited above please
Secs. II A, II C, and II D of Ref.@31#.

Let us now use the actual degree distribution of ourad
hoc networks: it is easily seen that the probability distrib
tion of the number of nodes contained in any disc with rad
r n is the Poisson distribution with expectation valuer n

2 . It
means that
0-2
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pk5
~r n

2!k

k!
e2r n

2
~5!

is the probability that a vertex will havek21 neighbors
(21 is because the node itself does not count for a ne
bor!. The generating functions are

G0~x!5e2r n
2

(
k50

`
~r n

2!k

k!
xk5e(x21)r n

2

and

G1~x!5
r n

2G0~x!

r n
2

[G0~x!,

which speciality of the Poisson distribution makes

u512S,

a solution of Eq.~4!, whence Eq.~3! turns into

S512e2Srn
2
,

and after rearranging, the relation of the size of the gi
component and the transmission range finally becomes

r n
25

log~12S!

2S
. ~6!

Applying this relation, one is able to calculate the minimu
transmission range needed to achieve a given connect
ratio in random networks of large node numbers, as ill
trated in Fig. 3~see also Sec. V!.

It will be noted here that while Eq.~6! holds for random
networks and—as is shown in Sec. V—for fractalad hoc
networks, ther n–S relationship is different for the finite
rangead hoccase; however, the latter is to be discussed i
separate paper.

FIG. 2. Giant component sizes for various values ofN and b
(a50.2 for all cases!. Note howS(N) reaches 1 forb<2, yet for
b.2, S(N) tends to a value strictly,1.
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IV. THE FRACTAL AD HOC NEIGHBORSHIP
ALGORITHM

The results of the preceding section apply for scena
where the arena is ‘‘flat,’’ that is, the only limit to build
connection between two nodes is their geometrical distan
In the present section we introduce the idea of generali
obstacles that can screen nodes from each other even if
are positioned within the transmission range. This cha
produces graphs with extended spatial structure, which
why we call the algorithm fractal.

The obstacles are adopted by changing the algorithm
edge generation. Now two nodes within the transmiss
range will be connected with a probability, which is given
the function of their geometrical distance. For every tw
nodesu,vPV, let p„dist(u,v)… be the probability that an
edgeeuvPE connecting them is set up.

To choose the actual form ofp(r ), consider the follow-
ing. First, the possibility of connections will drop with in
creasing geometrical distances, which makesp(r ) to be in
inverse proportion tor. Second, for the description of th
obstacles one may think of a hilly landscape. On the o
hand, a node may be covered from the view of nearby no
by an adjacent hill; the falloff~the measure of ‘‘hilliness’’! is
controlled by the value of parameterb—hills get more dense
with increasingb. On the other hand, at any point on th
arena there can be directions at which the communica
from the given point is not screened for a larger-than-aver
distance~e.g., sitting in linked valleys or residing on hill
tops!; this makes long range connections still possible, ev
though connections are mostly short range. Finally, the
gularity caused by the 1/r term is shifted to the left to make
p(r ) finite for all r>0, and a normalization parameter
introduced,a, which enables to regulate the amplitude
p(0). As aresult,p(r ) takes the form

p~r !5
a

S 11
r

r 0b D b , ~7!

with feasible parameter valuesa.0 andb.0.
Performing computer simulations of networks connec

according to Eq.~7!, one obtains different results, asb
changes. In Fig. 2 we compared the resulting giant clu
sizes for differentb values. At lower parameter valuesS(N)
saturates toS51; all nodes become elements of the gia
cluster above a certain finite node number. Forb52.5 and
above,S still converges to a finite value; however, the lim
now is strictly less than 1. It means that networks with su
parameter values will not become fully connected even
large node numbers. Moreover, the proportion of the larg
connected subgraphs drops withb worse than linearly. In the
rest of this section we try to interpret this dual behavior
S(b).

It is easy to imagine that the more connections the no
have in average, the larger the giant cluster grows. M
accurately we state that theaverage vertex degreêC& deter-
mines the cardinality of the largest connected subgraph inG.
Clearly, if ^C&50, then every connected component co
tains a single node, and in theN→` limit S becomes 0.
0-3
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Also, if ^C& diverges or even if only a single node is co
nected to all the others, the graph obviously gets fully c
nected. Based on these considerations we are to examine^C&
in detail.

Vertex degree inG can be calculated by fixing a singl
node and totaling thêCr& expectation value of the numbe
of neighbors that reside exactly at the distancer away from
the fixed one. Assuming that the density of nodes is cons
(N/A), ^Cr& can be expressed by multiplying the avera
number of nodes at distancer and the probability~7!:

^Cr&5
2rp

A
Np~r !.

Now if r̄5N/A, the average vertex degree is

^C&5E
A
^Cr&dr5E

A
p~r !2pr̄rdr , ~8!

whereA represents the physical boundaries of the arena
there are no nodes outside this region, the integral will b
outsideA.

In general, solving Eq.~8! yields

^C&5a2pr̄
r 0b

12b F r S 11
r

r 0b D 12b

2
r 0b

22b S 11
r

r 0b D 22bG
A

. ~9!

However, the expectation value of^C& is dependent on the
value of b. Accordingly, our discussion is separated in
several cases.

~1! b.2. In this case Eq.~9! can be evaluated forA
being the intervalr P@0;`) in the limit wherer 0→0:

^C&5
a2pr̄r 0

2b2

~12b!~22b!
[

2ab2

~b21!~b22!
. ~10!

FIG. 3. Simulations ofad hoc networks by using the fracta
neighborship algorithm with parameter values bothb,2 and b
.2 yield the same giant cluster size vs average vertex degre
random graphs do. Inset displays same plots with2 log(12S)/S as
the abscissa.
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Furthermore, knowing that

lim
a→`

1

~11x!a
5e2ax

in the b→` limit, Eq. ~10! becomes

^C&5a2pr̄r 0
2[2a.

~2! b51 or b52. Equation~9! diverges logarithmically
in r, thusC does not have an expectation value.

~3! b,2 and bÞ1. Here ^C& will diverge asN→`;
however, unlike the previous case we try to determine
^C(N)& relation. First let us rewrite Eq.~9! as

^C&5
a2pr̄r 0b

~12b!~22b! F r ~12b!2r 0b

S 11
r

r 0b D b21G
A

. ~11!

Concerning ther dependence in@•••#A we can assume tha
there is a maximal transmission ranger max such that for
transmission rangesr .r max the contribution of the integrand
in Eq. ~8! is negligible. In this way@•••#A part of Eq.~11!
can be estimated as

@•••#A.2
r 0b

S 11
r

r 0b D b21 1
r max~12b!

S 11
r max

r 0b D b21 . ~12!

Now if r 0→0 ~which happens to be the case at sufficien
large node numbers!, the first term in Eq.~12! vanishes and
11 becomes negligible in the denominator of the seco
term. After substituting this second term and simplifying t
expression, Eq.~9! finally becomes

^C&.
a2pr̄

22b S r 0b

r max
D b

r max
2 .

The N dependence of̂C& can be derived from here by sub
stituting definition~1!, r̄5N/A, and the fact thatr max

2 }A. By
these means the above expression yields

^C&}N12b/2. ~13!

To summarize, ifb.2, then a finite neighbor count i
expected, and thus such networks are not going to be f
connected~see again Fig. 2!. On the other hand, ifb,2,
then ^C& diverges exponentially with increasing node num
bers, which in theory leads to fully connected networks
largeN, and this means that the more nodes are in the s
tem, the larger the fraction of connected nodes is to beco

V. SIMULATION RESULTS

We carried out computer simulations to illustrate our fin
ings, especially Eqs.~10! and ~13!. During a simulation run
we first pick the random coordinates for theN nodes. Sec-
ond, the probabilityp is calculated according to Eq.~7!, us-

as
0-4
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ing the input parametersa, b, and r. Then for every two
nodes a uniform random numberjP@0;1# is generated and
compared top: for casesj,p an edge connecting those tw
nodes is recorded. Finally, we count the component sizes
take the largest of these. The output of the simulation ru
the average vertex degree^C& and the largest component
sizeS.

As the first test we recorded the giant cluster size vs tra
mission range relationship. Data points were obtained by
peated runs, changing only the amplitude parametera of Eq.
~7! over an appropriate interval~e.g., aP@0.1;1.5# for the
b55.6 case!. The collected output data are shown in Fig.
We also shall note the analogy with random graphs: us
Eq. ~5!, the average vertex degree is^Crnd&5(kkpk5r n

2 and,
therefore, Eq.~6! can be expressed as

^Crnd&5
log~12S!

2S
. ~14!

Figure 3 illustrates well that in a network connected us
the fractal neighborship algorithm, the observableS2^C&
relationship matches the equivalent analytical result for r
dom graphs for both relevant cases~1! and ~2! in Sec. IV.

On the other hand, the behavior of^C& turns out to be
sensible to the value ofb, as expected. Let us start with th
b.2 case. Figure 4 presents the simulation results for
works connected as by Eq.~7!, using different paramete
sets. For example, according to Eq.~10!, the average vertex
degree for thea50.8,b55.6 case is expected to be

^C&5
230.835.62

4.633.6
.3.03,

which seems to fulfill in Fig. 4: increasingN, the simulation
output converges to the analytical result.

Now let us turn to the 0,b,2 case. In Fig. 5 the dat
obtained fora50.1 andb51.56 are shown along with a
numeric function fit according to Eq.~13!:

FIG. 4. Average vertex degrees ofad hocgraphs forb.2. Data
points were acquired using the indicated parameter sets. Da
lines yield the appropriate analytical results, which shall hold in
N→` limit as by Eq.~10!.
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^C~N!&5c0N12(1.56/2)1c1

~the parameters turn out to bec050.74 andc1521.38).
The simulations agree with theN12b/2 divergence well, as
calculated in Sec. IV.

Figures 4 and 5 now illustrate the differingS behavior
presented in Fig. 2. Data sets forb55.6, 4.2, and 3.5 do no
approach full connectivity: with increasingN they converge
to S.0.93, 0.84, and 0.33, respectively; on the contrary,
b51.56 case clearly reachesS51 for node numbers in the
magnitude of several thousands.

VI. CONCLUSIONS

In the present paper we have investigated the conne
components that are produced in randomad hocnetworks.
Based on the results, the number of nodes needed for a g
connectivity ratio can be estimated. Thus, our results m
hint about the usefulness of random fractalad hocnetworks.

We modified the conventional connection function a
made long range connections possible. This way the prod
ing networks become extended in their spatial structure
thought the network is situated in an area with obstac
screening some of the transmissions. We have found th
single parameter—the average neighbor count^C&—can
characterize the proportion of the largest connected sub
work. We have also seen that depending on the connec
function parameters, this proportion can be either bounde
unbounded as the system sizeN is increased. For both case
^C(N)& was derived analytically and confirmed by the sim
lations.
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